Refine Your Search

Topic

Search Results

Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Optimization Analysis of Injection Angle and Injector Nozzle of an Advanced Compressed Air Engine Kit

2015-04-14
2015-01-1678
Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
Technical Paper

Optimisation of Process Parameters of EDM on Al6082/SiC Metal Matrix Composite

2016-04-05
2016-01-0533
In the present investigation AA6082/ SiC MMC composite is fabricated using electromagnetic stir casting technique. Silicon carbide (SiC) of 40 μm size is used as reinforcement and is varied by weight percentage as 0%, 2.5%, 5%, 7.5%, 10% in alloy AA6082. The microstructure of the fabricated composite is studied by scanning electron microscopy (SEM) which shows even distribution of the reinforcement. The mechanical properties improve with SiCp till 7.5%, after that the properties decreases which may be due to presence of porosity during the composite manufacturing. A comparative study of mechanical properties such as tensile strength, hardness and toughness has been done between the composite and base aluminium alloy. After the comparative study it was found that the composite having AA6082/SiC-92.5%/7.5% is best suited. So, it is used for optimization of Electrical Discharge Machining (EDM) process parameters using Taguchi’s design of experiment.
Technical Paper

Low Cost Optimization of Engine Emissions for an Intake Runner Designed for Medium Capacity CI Engine through Correlations between Emission Values and Intake Configurations

2016-04-05
2016-01-1004
The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
Technical Paper

In-Cylinder Combustion and Emission Characteristics of an Agricultural Diesel Engine Fuelled with Blends of Diesel and Oxidatively Stabilized Calophyllum Methyl Ester

2016-02-01
2016-28-0140
In the present experimental investigation, performance, emission and combustion characteristics of a single cylinder diesel engine using diesel-biodiesel blends and antioxidant containing biodiesel test fuels was carried out. The potential suitability of aromatic amine based antioxidants to enhance the oxidation stability of biodiesel on one hand and reduction of tail pipe oxides of nitrogen (NOx) on the other were evaluated. Tertiary Butyl Hydroquinone (TBHQ) was considered as the antioxidant and Calophyllum Inophyllum vegetable oil was taken as the feedstock for biodiesel production. The test fuel samples were neat diesel (D100), 10% and 20% blend of Calophyllum biodiesel with diesel (CB10 and CB20) and 1500 ppm of TBHQ in CB10 and CB20 (CBT10 and CBT20). The results indicated that neat biodiesel blended test fuels (CB10 and CB20) exhibited lower brake thermal efficiency compared to the diesel baseline by a margin of 3% to 10% at full load.
Technical Paper

Flow Simulation and Theoretical Investigation on Aerodynamics of NACA-2415 Aerofoil at Low Reynolds Number

2015-09-15
2015-01-2576
The Aerofoil theory along with its design has integrated itself into the vast areas of applications ranging from Automobile, Aeronautical, Wind Turbine, Micro-Vehicles, UAVs applications. In this paper, knowing the intricacy of the airfoil's applications, A MATLAB Code for NACA-2415 Airfoil is developed and a Model with dimensions c=180mm, w=126mm, tmax=27mm is generated. The model is then subjected to Flow Simulation with various input parameters: Reynolds Numbers taken are- (REN-1) 105 and (REN-2) 2×105 [Laminar External Flow], Angles of attack taken are-0°, 4°, 8°, 12°. The pressure and velocity distribution along the airfoil sketch curve are graphed qualitatively, emphasizing on the flow separation leading to the transition from laminar to turbulent flow. The various aerodynamics characteristic curves for coefficient of pressure, coefficient of lift and coefficient of drag are plotted against different angle of attacks for REN-1 and REN-2.
Technical Paper

FUELLING A AGRICULTURE DIESEL ENGINE WITH DERIVATIVE OF PALM OIL

2004-01-16
2004-28-0039
As neat crude palm oil is not ideally suitable as a fuel for diesel engines because of its high viscosity; process of transesterification was adopted to develop methyl ester of palm oil that approximate the properties and performance of hydrocarbon-based diesel fuel. Various properties of the methyl ester of palm oil were evaluated and compared in relation with that of neat diesel. The prepared methyl ester of palm oil, blended in different concentrations with neat diesel was then subjected to performance and emission tests in order to evaluate its suitability in diesel engine. The data thus generated were compared with base line data generated from neat diesel. An optimal blend of 10-20% methyl ester of palm oil with neat diesel exhibited best performance and smooth engine operation without any symptoms of undesired combustion phenomenon. This suggests use of 10-20% of biodiesel developed from palm oil in diesel engine with out any difficulty.
Technical Paper

Experimental Investigation on Use of Jatropha Oil Ethyl Easter and Diesel Blends in Small Capacity Diesel Engine

2013-09-08
2013-24-0172
Biodiesel in has gained great momentum in last few years and has been a subject of vast research all around the globe. Bulk of the research work carried out so far has been confined to production of methyl esters of vegetable oil that is known as biodiesel in the transesterification process. In the present study, jatropha oil ethyl ester (JOEE) was prepared using transesterification process with ethanol and KOH as a catalyst. The evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits of ASTM/EN standards. A small capacity diesel engine was fuelled with different blends of JOEE and diesel and various performances, emission and combustion characteristics were evaluated. The results suggested that brake thermal efficiency was increased and emissions of carbon monoxide, hydrocarbons and smoke opacity were found lower for JOEE blend confirming better combustion due to the oxygenated fuel and higher cetane rating.
Journal Article

Experimental Investigation of Diesel Engine Fueled with Jatropha Oil Blend with Ethanol

2013-09-08
2013-24-0105
Dwindling petroleum reserves and alarming level of air pollution has been an issue of great concern in recent times and researchers across the world are experimenting on variety of renewable fuels for meeting the future energy demands. Within the gamut of alternative fuels, biofuels are the most promising and have the potential to mitigate climate change and lease a new life to existing IC engines. The vegetable oils are having immense potential in this context and have been used either in neat or modified form by large number of researchers. Jatropha curcus is a perennial plant and bears non edible oil. The plant is drought tolerant and has been cultivated all over the arid and semi-arid areas for reforestation. In the present study, blends of jatropha oil and ethanol have been prepared in 5, 10, 15 and 20% (v/v) and evaluation of important properties of blends has been carried. The results show that properties are quite similar to diesel fuel.
Technical Paper

Experimental Analysis of Retarding the Spark Timing in a Hydrogen Enriched Gasoline and Alcohol Blend Powered Spark Ignition Engine

2016-04-05
2016-01-1277
Gasoline has been the major fuel in transportation, its good calorific value and high volatility have made it suitable for use in different injection methods. The drastic increase in use of carbon based fuels has led to increase in harmful emissions, thus resulting in implementation of stricter emissions norms. These harmful emissions include carbon monoxide and NOx. To meet the new norms and reduce the harmful emissions, better techniques have to be implemented to achieve better combustion of gasoline and reduce the amount of carbon monoxide in the exhaust. One such way of doing this is by enriching gasoline with hydrogen. Due to its low activation energy and high calorific value, the high energy released from hydrogen can be used to achieve complete combustion of gasoline fuel. However, there are certain drawbacks to the use of hydrogen in spark ignition engine, knocking and overheating of engine parts being the major problems.
Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

2013-11-27
2013-01-2888
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Technical Paper

Evaluation of Performance and Emission Characteristic of Karanja Biodiesel and Diesel Blend in a Medium Capacity C.I. Engine Employing EGR

2011-08-30
2011-01-1936
Depleting fossil energy reserves and large scale debasement of the environment has been grabbing headlines for some time now. Biodiesel has been proven by researchers to produce less CO, HC and PM, albeit higher NOx as compared to diesel. The present study was carried out with blends of Karanja - a type of Leguminosae plant abundant in India - that produces non-edible seed oil analogous to Jatropha. An exhaust gas recirculation (EGR) system was employed to encumber the higher NOx emissions produced with biodiesel. Performance and emission characteristics of Karanja biodiesel blend (KB20) with EGR rates of 0, 5, 10, 15 & 20% were compared with baseline data of diesel. The results show that adaptation of EGR with KB20 reduces NOx emissions without any penalty on smoke opacity or BSEC.
Technical Paper

Evaluation of Emission Characteristics of Blend of Algae Oil Methyl Ester with Diesel in a Medium Capacity Diesel Engine

2014-04-01
2014-01-1378
Primary energy sources can be divided into non-renewable and renewable. The over-exploration of non-renewable sources for energy availability imposes considerable impacts on the environment. Reducing the use of fossil fuels would significantly reduce the carbon dioxide emissions and other pollutants produced. The future drift for sustainable production of renewable energy is cautiously thoughtful for it has been increasingly understood that first generation biofuels, majorly produced from food crops that are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-edible feedstock such as microalgae, which potentially offers greatest opportunities in the longer term. Microalgae are considered a very promising feedstock for biodiesel production due to their very high yield and their no competition with food crops.
Technical Paper

Enhancement in Performance and Emission Characteristics of Diesel Engine by Adding Alloy Nanoparticle

2016-10-17
2016-01-2249
Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Effect of Blending of Ethanol in Kusum Oil on Performance and Emission Characteristics of a Single Cylinder Diesel Engine

2014-04-01
2014-01-1396
In the present study, ethanol was added in lower proportions to non-edible vegetable oil “Schleichera oleosa” or “Kusum”, to evaluate various performance and emission characteristics of a single cylinder; diesel engine. For engine's trial, four samples were prepared with 5%, 10%, 15% and 20% ethanol in kusum oil (v/v) and the blends were named as E5K95, E10K90, E15K85 and E20K80 respectively. Neat Kusum oil was named as K100. The results indicated that brake thermal efficiency (BTE) was found to increase with increase in volume fraction of ethanol in the kusum oil. E5K95, E10K90, E15K85 and E20K80 test fuels exhibited maximum BTE of 25.4%, 26.4%, 27.4% and 27.7% respectively as compared to 23.6% exhibited by the neat Kusum oil. Similarly, full load brake specific energy consumption (BSEC) decreased from 16.3MJ/kWh in case of neat Kusum oil to 15.1MJ/kWh for E20K80 with an almost linear reduction pattern with increased ethanol composition in the test fuel.
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

2016-04-05
2016-01-1015
Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
Technical Paper

Development of an Advanced Compressed Air Engine Kit for Small Engine

2014-04-01
2014-01-1666
The transportation sector faces great and urgent challenges, including climate impacts of greenhouse gas emissions, local health impacts of criteria pollutants, and political & economic impacts of petroleum dependence. While several revolutionary solutions are being developed to reduce the impact of motor vehicles, such as increased fuel economy standards and accelerated adoption of hybrid vehicles, revolutionary new approaches must also be evaluated. One such opportunity is found in Compressed Air Engine (CA Engine), which is powered solely by compressed air stored in a vehicle on-board pressurized tank. Proponents of this technology claim CA Engines are greener and cheaper to operate, since they do not consume fossil fuels and produce zero tail-pipe emissions, while offering the power and performance needed for light-duty vehicle use.
X